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ABSTRACT
The need for novel data analysis is urgent in the face of
a data deluge from modern applications. Traditional ap-
proaches to data analysis incur significant data movement
costs, moving data back and forth between the storage sys-
tem and the processor. Emerging Active Flash devices en-
able processing on the flash, where the data already resides.
An array of such Active Flash devices allows us to revisit how
analysis workflows interact with storage systems. By seam-
lessly blending together the flash storage and data analysis,
we create an analysis workflow-aware storage system, Ana-
lyzeThis. Our guiding principle is that analysis-awareness be
deeply ingrained in each and every layer of the storage, ele-
vating data analyses as first-class citizens, and transforming
AnalyzeThis into a potent analytics-aware appliance. We
implement the AnalyzeThis storage system atop an emula-
tion platform of the Active Flash array. Our results indicate
that AnalyzeThis is viable, expediting workflow execution
and minimizing data movement.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—sec-
ondary storage; D.4.7 [Operating Systems]: Organization
and Design—distributed systems

Keywords
Data Analytics, Visualization & Storage

1. INTRODUCTION
Data analysis is often considered the fourth paradigm of

scientific discovery, complementing theory, experiment, and
simulation. Experimental facilities (e.g., Spallation Neu-
tron Source [46]), observational devices (e.g., Sloan Digital
Sky Survey [43], Large Synoptic Survey Telescope [24]) and
high-performance computing (HPC) simulations of scientific
phenomena on clusters (e.g., Titan supercomputer [50] and
other Top500 machines [52]) produce hundreds of terabytes
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of data that need to analyzed to glean insights. The data
products are often stored in central, shared repositories, sup-
ported by networked file systems (NFS) or parallel file sys-
tems (PFS) (e.g., Lustre [42] or GPFS [41]). Analyses that
operate on these datasets are often I/O-intensive, and in-
volve running a complex workflow job on a smaller cluster.
The analysis workflow reads the input data from the central
storage, applies a series of analytics kernels, such as statis-
tics, reduction, clustering, feature extraction and legacy ap-
plication routines, and writes the final, reduced data back
to the storage system. We refer to the entire sequence of
reading the input data, followed by analysis on a cluster,
and writing the output as Offline data analysis.

Offline analysis incurs a substantial amount of redundant
I/O, as it has to read the inputs from the storage system, and
write the reduced results back. Reading back large data for
analysis on a cluster exacerbates the I/O bandwidth bottle-
neck that is already acute in storage systems [19]. This is be-
cause, I/O bandwidth has traditionally been lagging behind
the compute and memory subsystems, and the data produc-
tion rates from simulations [51] and experimental facilities
are compounding the problem further, creating a storage
wall. Instead of an offline approach to data analysis, ana-
lyzing data in-situ on the storage system, where the data
resides, can not only minimize data movement, but also ex-
pedite the time to solution of the analysis workflow. In this
paper, we explore such an approach to data analysis.

To alleviate the I/O bottleneck, network-attached storage
systems for clusters are being built with solid-state devices
(SSD), resulting in either hybrid SSD/HDD systems or all
flash arrays. The lack of mechanical moving parts, coupled
with a superior I/O bandwidth and low latency, has made
SSDs an attractive choice. We argue that SSDs are not only
beneficial for expediting I/O, but also for on-the-fly data
analysis. SSDs boast an increasing computational capability
on the controllers, which have the potential to execute data
analysis kernels in an in-situ fashion. In this model, the
analysis is conducted near the data, instead of shipping the
data to the compute cores of the analysis cluster.

In our prior work on Active Flash [5, 51], we explored the
viability of offloading data analysis kernels onto the flash
controllers, and analyzed the performance and energy trade-
offs of such an offload. We found that Active Flash outper-
formed offline analysis via a PFS for several analysis tasks.
In this paper, we explore how such an active processing el-
ement can form the fabric of an entire storage system that
is workflow-aware.

An array of such Active Flash devices allows us to rethink



the way data analysis workflows interact with storage sys-
tems. Traditionally, storage systems and workflow systems
have evolved independently of each other, creating a discon-
nect between the two. By blending the flash storage array
and data analysis together in a seamless fashion, we cre-
ate an analysis workflow-aware storage system, AnalyzeThis.
Consider the following simple—yet powerful—analogy from
day-to-day desktop computing, which explains our vision for
AnalyzeThis. A smart folder on modern operating systems
allows us to associate a set of rules that will be implemented
on files stored in that folder, e.g., convert all postscript files
into pdfs or compress (zip) all files in the folder. A simi-
lar idea extrapolated to large-scale data analysis would be:
writing data to an analysis-aware storage system automat-
ically triggers a sequence of predefined analysis routines to
be applied to the data.

Contributions: We propose AnalyzeThis, a storage sys-
tem atop an array of Active Flash devices. Our guiding prin-
ciple is that analysis-awareness be deeply ingrained within
each and every layer of the storage system, thereby elevat-
ing the data analysis operations as first-class citizens. An-
alyzeThis realizes workflow-awareness by creating a novel
analysis data object abstraction, which integrally ties the
dataset on the flash device with the analysis sequence to
be performed on the dataset, and the lineage of the dataset
(Section 3.1). The analysis data object abstraction is over-
laid on the Active Flash device, and this entity is referred to
as the Active Flash Element, AFE. We mimic an AFE array
using an emulation platform. We explore how scheduling,
i.e., both data placement and workflow orchestration, can
be performed within the storage, in a manner that mini-
mizes unnecessary data movement between the AFEs, and
optimizes workflow performance (Section 3.2). Finally, we
design easy-to-use file system interfaces with which the AFE
array can be exposed to the user (Section 3.3). The FUSE-
based file system layer enables users to read and write data,
submit analysis workflow jobs, track and interact with them
via a /proc-like interface, and pose provenance queries to
locate intermediate data (Section 3.4).We argue that these
concepts bring a fresh perspective to large-scale data analy-
sis. Our results with real-world, complex data analysis work-
flows on AnalyzeThis, built atop an emulation-based AFE
prototype, indicate that it is very viable, and can expedite
workflows significantly.

1.1 Background on Active Flash
In this section, we present a summary of our prior work,

Active Flash, upon which the AnalyzeThis storage system
is built.

Enabling Trends: First, we highlight the trends that
make flash amenable for active processing.

High I/O throughput and internal bandwidth: SSDs offer
high I/O throughput and internal bandwidth due to inter-
leaving techniques over multiple channels and flash chips.
This bandwidth is likely to increase with devices possessing
more channels or flash chips with higher speed interfaces.

Availability of spare cycles on the SSD controller: SSD
controllers exhibit idle cycles on many workloads. For ex-
ample, HPC workloads are bursty, with distinct compute
and I/O phases. Typically, a busy short phase of I/O ac-
tivity is followed by a long phase of computation [7, 19].
Further, the I/O activity recurs periodically (e.g., once ev-
ery hour), and the total time spent on I/O is usually low

(below 5% [20]). Even some enterprise workloads exhibit
idle periods between their I/O bursts [25, 26]. Data ingest
from experimental facilities, such as SNS [46] are based on
the availability of beam time, and there are several oppor-
tunities for idle periods between user experiments, which
involve careful calibration of the sample before the beam
can be applied to it to collect data. Such workloads expose
spare cycles available on the SSD controller, making it a
suitable candidate for offloading data analysis tasks.

Multi-core SSD controllers: Recently marketed SSDs are
equipped with fairly powerful mobile cores, and even multi-
core controllers (e.g. a 4-core 780 MHz controller on the
OCZ RevoDrive X2 [32]). Multi-core SSD controllers are
likely to become more common place, and hence the avail-
able idle time on the SSD controllers will increase as well.

Active Flash: In our prior work on Active Flash [5, 51],
we presented an approach to perform in-situ data analysis on
SSDs. We presented detailed performance and energy mod-
els for Active Flash and offline analysis via PFS, and studied
their provisioning cost, performance, and energy consump-
tion. Our modeling and simulation results indicated that
Active Flash is better than the offline approach in helping
to reduce both data movement, and energy consumption,
while also improving the overall application performance.
Interestingly, our results suggest that Active Flash can even
help defray part of the capital expenditure of procuring flash
devices through energy savings. We also studied hybrid
analysis, involving processing on both flash and host cores,
and explored when it might be suitable to offload analysis
to flash. Next, our simulation of I/O-compute trade-offs
demonstrated that internal scheduling may be used to al-
low Active Flash to perform data analysis without impact
on I/O performance. To this end, we explored several inter-
nal scheduling strategies within the flash translation layer
(FTL) such as analyzing while data written to the flash is
still in the controller’s DRAM, analyzing only during idle
times (when there is no I/O due to data ingest), and com-
bining idle time analysis with the scheduling of garbage col-
lection (GC) to preempt GC interrupting an ongoing data
analysis due to the lack of available free pages. Finally, we
have demonstrated the feasibility of Active Flash through
the construction of a prototype, based on the OpenSSD
development platform, extending the OpenSSD FTL with
data analysis functions. We have explored the offloading of
several data analysis kernels, such as edge detection, find-
ing local extrema, heartbeat detection, data compression,
statistics, pattern matching, transpose, PCA, Rabin finger-
printing and k-means clustering, and found Active Flash to
be very viable and cost-effective for such data analysis.

2. ANALYZETHIS STORAGE SYSTEM

2.1 Goals
In this section, we discuss our key design principles.
Analysis-awareness: Our main objective is to introduce

analysis-aware semantics into the storage system. There is
an urgent need to analyze the data in-situ, on the storage
component, where the data already resides.

Reduce Data Movement: It is expected that in future,
exascale data centers, the cost of data movement will rival
that of the computation itself [16]. Thus, we need to mini-
mize data movement in analysis workflows as well as across
the AFEs within the storage.



Figure 1: AnalyzeThis overview. Figure shows analysis-
awareness at each and every layer of AnalyzeThis.

Capture Lineage: There is a need to track provenance
and intermediate data products generated by the analysis
steps on the distributed AFEs. The intermediate data can
serve as starting points for future workflows.

Easy-to-use File System Interface: The workflow or-
chestration across the AFEs needs to be masqueraded be-
hind an easy-to-use, familiar interface. Users should be able
to easily submit workflow to the storage system, monitor
and track them, query the storage system for intermediate
data products of interest and discover them.

2.2 Overview
We envision AnalyzeThis as a smart, analytics pipeline-

aware storage system atop an array of Active Flash devices
(Figure 1). The analysis workflow job is submitted to the
AnalyzeThis storage system. As the input data to be pro-
cessed becomes available on AnalyzeThis (from experiments,
observations or simulations) the workflow that the user has
submitted is applied to it. The final processed data, or any of
the intermediate data is stored in AnalyzeThis, and may be
retained therein, transferred to other repositories that may
be available to the user (e.g., archive, PFS), or removed
based on lifetime metadata attributes that the user may
have associated with the dataset. Thematic to the design of
AnalyzeThis is that analysis-awareness be deeply embedded
within each layer of the storage system. In the future, we
expect that such analysis-aware semantics will be adopted
into existing PFS and NFS storage. Below is a bottom-up
description of the system.

Active Flash Array: At the lowest level is the Active
Flash array that is composed of discrete Active Flash de-
vices, capable of running individual analysis kernels. We en-
vision an array of such devices that are connected via SATA,
PCIe or NVMe.

Analysis Object Abstraction: On top of the Active
Flash array, we propose to create a new data model, the
analysis object abstraction that encapsulates the data col-
lection, the analysis workflow to be performed on the data,
and the lineage of how the data was derived. We argue that
such a rich data model makes analysis a first-class citizen
within the storage system by integrally tying together the
data and the processing to be performed (or was performed)

on the data. The analysis abstraction, coupled with the Ac-
tive Flash device (capable of processing), is referred to as
the Active Flash Element, “AFE.”

Workflow Scheduling Layer: The goal of this layer is to
mimic how users interact with batch computing systems and
integrate similar semantics into the storage system. Such
a strategy would be a concrete step towards bridging the
gap between storage and analysis workflows. Users typically
submit a workflow, e.g., a PBS [15] or a DAGMAN [49]
script, to a cluster’s batch scheduler, which creates a de-
pendency graph and dispatches the tasks onto the compute
nodes based on a policy. Similarly, we propose a Workflow
Scheduler that determines both data placement and schedul-
ing analysis computation across the AFEs in a manner that
optimizes both end-to-end workflow performance and data
movement costs.

A File System Interface: We tie the above components
together into a cohesive system for the user by employing
a FUSE-based file system interface with limited functional-
ity (“anFS”). anFS supports a namespace, reads and writes
to the AFE array, directory creation, internal data move-
ment between the AFEs, a “/proc-like” infrastructure, and
the ability to pose provenance queries to search for inter-
mediate analysis data products. Similar to how /proc is a
control and information center for the OS kernel, presenting
runtime system information on memory, mounted devices
and hardware, /mnt/anFS/.analyzethis/, allows users
to submit workflow jobs, track and interact with them, get
status information, e.g., load about the AFEs.

Together, these constructs provide a very potent in-situ
data analytics-aware storage appliance.

3. DESIGN AND IMPLEMENTATION
Figure 2(a) presents the architecture of AnalyzeThis. The

AnalyzeThis appliance exposes a FUSE file system, “anFS,”
to the users that can be mounted via an NFS protocol. Users
submit analysis workflows and write data objects to Ana-
lyzeThis via anFS that is mounted on their desktop com-
puter or an analysis cluster. Thereafter, users can monitor
and query the status of the jobs, and search for intermediate
data products of branches of the workflow. At the backend,
the AnalyzeThis appliance comprises of one or more stor-
age servers to which multiple Active Flash devices are con-
nected. The storage server and the Active Flash devices run
several services, and collectively help realize the analysis-
aware storage appliance. Each Active Flash device runs the
software service that overlays an analysis object abstraction
atop, transforming it into an AFE, as well as other services
required to handshake with the storage server. The stor-
age server runs services such as those required for making
the AFEs available as a file system (namespace management
and data protocols), distributed workflow orchestration, dis-
tributed provenance capture, and interfacing with the AFEs
(device management). These services are implemented be-
hind a FUSE layer on the storage server. Together, in a
distributed fashion, they achieve workflow awareness.

Central to our design is the seamless integration of work-
flow scheduling and the file system. To this end, behind
anFS is a workflow scheduler that constructs a directed acyclic
graph (DAG) from the analysis workflow job. The scheduler
produces multiple mini DAGs based on task dependencies
and optimization strategies, e.g., to minimize data move-
ment. The mini DAGs comprise of a series of tasks, which
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AnalyzeThis by mounting the anfs client via the NFS protocol. AnalyzeThis comprises of 

multiple Active Flash devices, connected to one or more storage servers. Together, they 

run several services such as AFE, anFS servers, namespace, workflow, provenance and 

device managers.

(b) anFS Architecture and Data and Control Paths: The Workflow and device managers 

handle the active file operations or the control path. The Namespace manager, along with 

ExoFS, exposes the AFE as a file system to the FUSE layer for traditional data operations. 

The FUSE layer of anFS ties together the control and data paths into a user-level file system.
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Figure 2: AnalyzeThis architecture and components.

the storage server maintains in a lightweight database. The
scheduler dispatches the mini DAGs for execution on the
AFEs; AFEs form the bottom-most layer of our system,
and are capable of running analysis kernels on the device
controllers. We use an analysis object abstraction, which en-
capsulates all necessary components of an task, including
analysis kernels, input and output datasets, and the lineage
information of all the objects therein. The analysis kernels
for a given workflow is assumed to be stored as a platform-
dependent binary executable object (.so format), compiled
for specific devices as needed, which can run on the AFEs.

3.1 Analysis Encapsulation
We introduce analysis awareness in the Active Flash ar-

ray by building on our prior work on Active Flash that has
demonstrated how to run an analysis kernel on the flash
controller [5, 51]. Our goal here is to study how to overlay
an analysis object abstraction atop the Active Flash device,
both of which together form the AFE. The construction of an
AFE involves interactions with the flash hardware to expose
features that higher-level layers can exploit, communication
protocol with the storage server and flash device, and the
necessary infrastructure for analysis object semantics. An
array of AFEs serve as building blocks for AnalyzeThis.

The first step to this end is to devise a richer construct
than just files. Data formats, e.g., HDF [45, 10, 34, 53]
NetCDF [30, 21], and NeXus [31], offer many desirable fea-
tures such as access needs (parallel I/O, random I/O, partial
I/O, etc.), portability, processing, efficient storage and self-
describing behavior. However, we also need a way to tie the
datasets with the analysis lifecycle in order to support fu-
ture data-intensive analysis. To address this, we extend the

concept of a basic data storage unit from traditional file(s)
to an analysis object abstraction that includes a file(s) plus
a sequence of analyses that operate on them plus the lineage
of how the file(s) were derived. Such an abstraction can be
created at a data collection-level, which may contain thou-
sands of files, e.g., climate community. The analysis data
abstraction would at least have either the analysis sequence
or the lineage of analysis tools (used to create the data) as-
sociated with the dataset during its lifetime on AnalyzeThis.
The elegance of integrating data and operations is that one
can even use this feature to record data management ac-
tivities as part of the dataset and not just analyses. For
example, we could potentially annotate the dataset with a
lifetime attribute that tells AnalyzeThis which datasets (fi-
nal or intermediate data of analysis) to retain and for how
long. The analysis object abstraction transforms the dataset
into an encapsulation that is more than just a pointer to a
byte stream; it is now an entity that lends itself to analysis.

3.1.1 Extending OSD Implementation for AFE
We realize the analysis object abstraction using the object

storage device (OSD) protocol. The OSD protocol provides
a foundation to build on, by supporting storage server to
AFE communication and by enabling an object container-
based view of the underlying storage. However, it does not
support analysis-awareness specifically. We use an open
source implementation of the OSD T10 standard, Linux
open-osd target [33], and extend it further with new fea-
tures to implement the AFEs. We refer to our version of
the OSD implementation as “AFE-OSD” (Figure 2(a)). Our
extensions are as follows: (i) Mini Workflow supports the ex-
ecution of entire branches of an analysis workflow that are
handed down by the higher-level Workflow Scheduler on the
storage server; (ii) Task Tracker tracks the status of running
tasks on the AFE; (iii) AFE Status checks the internal sta-
tus of the AFEs (e.g., load on the controller, capacity, wear-
out), and makes them available to the higher-level Workflow
Scheduler on the storage server to enable informed schedul-
ing decisions; (iv) Lineage Container captures the lineage
of the executed tasks; and (v) Lightweight Database Infras-
tructure supports the above components by cataloging the
necessary information and their associations.

Mini Workflow Engine: The AFE-OSD initiator on
the storage server submits the mini DAG to the AFE-OSD
target. The mini DAG represents a self-contained branch
of the workflow that can be processed on an AFE indepen-
dently. Each mini DAG is composed of a set of tasks. A
task is represented by an analysis kernel, and a series of in-
puts and outputs. The storage server dispatches the mini
DAGs to the AFEs using a series of ANALYZE_THIS exe-
cution commands, with metadata on the tasks. To handle
the tasks on the AFEs, we have implemented a new anal-
ysis task collection primitive in the AFE-OSD, which is an
encapsulation to integrally tie together the analysis kernel,
its inputs and outputs (Task Collection and the Task Col-
lection Attribute Page are represented in the bottom half of
Figure 3). Once the AFE receives the execution command,
it will create an analysis task collection, and insert the task
into a FIFO task queue that it maintains internally. As we
noted earlier, inputs and outputs can comprise of thousands
of files. To capture this notion, we create a linked collection
encapsulation for input and output datasets (using an exist-
ing Linked collection primitive), which denotes that a set of



files are linked together and belong to a particular dataset.
Kernel Executer: The kernel executer is a multi-threaded

entity that checks the task queue and dispatches the tasks
to the AFE controller. We have only used one core from the
multi-core controller, but the design allows for the use of
many cores. We rely on the ability of the Active Flash com-
ponent of the AFE to run the kernel on the controller core,
which has been studied in our prior work [5, 51]. Active
Flash locates the predefined entry point (start_kernel)
from the analysis kernel code (.so file), and begins the
execution. In our prior work on Active Flash [5] (summa-
rized in Section 1.1), we have explored FTL scheduling tech-
niques to coordinate regular flash I/O, active computation
and garbage collection, which can be used by the kernel ex-
ecuter.

Task Tracker: The Task Collection and the Task Collec-
tion Attribute page provide a way to track the execution sta-
tus of a task and its execution history, i.e., run time. Each
task collection has a unique task id. The storage server can
check the status of a running task by reading an attribute
page of its task collection using the get_attribute com-
mand and the task id. The workflow scheduler on the stor-
age server also queries the AFE for the execution history
of analysis kernels, to get an estimate of run times that are
then used in scheduling algorithms, e.g., Minimum Wait (in
Section 3.2).

AFE Status: The storage server can use an AFE’s hard-
ware status for better task scheduling. To this end, we have
created a status object to expose the internal information
to the storage server. The status object includes the AFE
device details such as wear-out for the flash, resource us-
age for controller, the AFE task queue details, and Garbage
Collection status. The AFEs are configured to periodically
update a local status object, which can then be retrieved by
the storage server as needed. Thus, the storage server can
check the status of the device by sending a get_attribute
command on the status object using its object id.

Lineage Container: Lineage information of tasks and data
objects are maintained in an AFE’s internal database. The
lineage container helps answer provenance queries (more de-
tails in Section 3.4).

Lightweight Database Infrastructure: We use a
lightweight database infrastructure (Figure 3), using SQLite
[48], to implement analysis-aware semantics into the storage
system. One approach is to have the storage server maintain
all of the analysis workflow, data, and analysis-semantics.
However, such a centralized approach is not resilient in the
face of storage server crashes. Instead, we implement a de-
centralized approach (refer to Figure 2(a)), wherein the stor-
age server (the FUSE layer) and the AFEs (the AFE-OSD
Target) maintain relevant information and linkages to col-
lectively achieve the analysis abstraction.

The storage server database table (anFS wf) maintains
high-level information about the analysis workflow, e.g., mini
DAGs (job ID), the associated tasks (task collection ID),
and the AFE ID on which to run the task. For example,
in Figure 3 user Alice runs a job (id = 1) and executes an
analysis task, kmeans (CID = 0x10), on AFE (id = 0). The
local AFE database tables store detailed metadata on all ob-
jects, namely mini DAGs, task collections, input and output
datasets, their attributes and associations.

Each AFE manages three tables. The Object table is used
to identify the type of an object, e.g., whether it is a task
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Figure 3: Analysis object abstraction implemented using
database engine. CID: task collection id, OID: object id, Attr.
offset: an offset in the attribute page.

collection, or a data object. For each object, it maintains
object identifiers, and object types. The Dataset TaskCol-
lection Membership table, tcid oid, manages the membership
of data objects to task collections. Multiple data objects can
belong to a task collection (e.g., multiple inputs to a task) or
a data object can be a member of multiple task collections
(e.g., a given dataset is input to multiple tasks). The At-
tribute table manages all the attributes of data objects and
task collections (e.g., those represented in the Task Collec-
tion Attribute Page). Each attribute (or record) in the at-
tribute table is defined using a data object or task collection
id, page number, and attribute number inside the Attribute
Page. Given this metadata, the storage server can query
information on the tasks and their associated datasets. For
example, given a task collection of 0x10 and an index into the
attribute page, 1 (to refer to input datasets), the attribute
table points to a value of 0x15, which can be reconciled with
the tcid oid table to obtain the input datasets 0x1002 and
0x1003.

3.2 Workflow Engine
We have built a workflow engine within AnalyzeThis, to

orchestrate both the placement of data objects as well as the
scheduling of analysis tasks across the AFEs. The sched-
uler is implemented in the FUSE file system (anFS). Once
a user submits the analysis workflow script via anFS, it dis-
tinguishes this request from a normal I/O request. This is
accomplished by treating the“write”request coming through
the special file (.submit) as a job submission instead of nor-
mal write operation by anFS. The script is delivered to the
scheduler which parses it to build a directed acyclic graph
(DAG), schedules the tasks, and sends the execution re-
quests to the AFEs via the AFE-OSD protocol. The vertices
in the DAG represent the analysis kernels, and inputs and
outputs represent incoming and outgoing edges. The sched-



uler decides which branches (mini DAGs) will run on which
AFEs based on several heuristics. While the mapping of a
mini DAG to AFE is determined apriori by the scheduler,
the tasks are not dispatched until the analysis job’s inputs
are written to AnalyzeThis. This is akin to the smart folder
concept discussed in Section 1. The analysis sequence is
first registered with AnalyzeThis, and once the input data
is available the tasks are executed.

Workflow Description and DAG: In our implemen-
tation, we have chosen to represent a job script using Lib-
config [22], a widely used library for processing structured
configuration files. Listing 1 shows an example of a job that
finds the maximum value in each input file. Each tasklet
is represented by the input and output object lists, and a
kernel object that operates on the input objects. Any data
dependencies among the tasklets are detected by the sched-
uler via a two-pass process. In the first pass, the scheduler
examines each task in the script and inserts the task record
(key: output file, value: task) into a hash table. In the
second pass, the scheduler examines the input files of each
task in the job script. When an input file is found in the
hash table, the examined task is dependent on the output
of the task in the hash table. If the input file is not found in
the hash table, the scheduler checks if the input file already
exists in the file system. If the file does not exist, the job
script is considered to be invalid. In this way, the depen-
dencies among the tasks can be resolved. The dependency
information is used to build a DAG. In the following exam-
ple, getmax.reduce cannot be launched until getmax.1
and getmax.2 produce their output objects. Therefore, the
overall performance of AnalyzeThis depends on the efficient
scheduling of the analysis kernels on the AFE array.

Listing 1: An example job script

name = "getmax";
workdir = "/scratch/getmax/";
tasks = (

{ name = "getmax.1"; kernel = "getmax.so";
input = [ "1.dat" ]; output = [ "1.max" ]; },

{ name = "getmax.2"; kernel = "getmax.so";
input = [ "2.dat" ]; output = [ "2.max" ]; },

{ name = "getmax.reduce"; kernel = "mean.so";
input = [ "1.max", "2.max" ];
output = [ "max.dat" ]; }

);

Scheduling Heuristics: The design of the workflow sched-
uler is driven by two objectives: (1) minimizing the over-
all execution time, and (2) reducing the data movement
across the AFEs. We point out that minimizing data move-
ment is critical as uncontrolled data movement may cause
early wear-out of the SSDs and increase in the energy con-
sumption [11]. We have designed and implemented several
scheduling strategies that attempt to strike a balance be-
tween these two competing objectives.

Round-robin: A simple round-robin approach schedules
tasks as soon as their dependency requirements are met, and
ensures a homogeneous load-distribution across all AFEs in
a best-effort manner since the tasks are scheduled without a
priori information about their execution time. It picks the
next available AFE in a round-robin fashion to balance the
computational load. The round-robin strategy schedules the
task on an available idle AFE controller, causing data move-
ment, potentially in favor of a shorter execution time and
load balance across the AFE controllers. Consequently, the
technique may suffer from excessive data movement because

it does not account for the amount of data to be moved.
Input Locality: To minimize the data movement across

the AFEs, this heuristic schedules tasks based on input lo-
cality. Tasks are scheduled on an AFE where maximum
amount of input data is present. The scheduler maintains
this information in memory during a job run, including the
size and location of all involved files. Input-locality favors
a reduction in data movement to performance (execution
time). In our experiments with real workflows, we observed
that this scheduling policy is effective in reducing the data
movement. However, it can potentially increase the over-
all execution time considerably because it will execute the
analysis on the AFE that stores larger input, even if other
AFEs are idle.

Minimum Wait: To reconcile execution time and data
movement, we propose to explicitly account for the data
transfer time and queuing delays on the AFE controllers.
The heuristic takes two inputs including a list of all available
AFEs and the tasks to be scheduled next. The scheduler
maintains information about the jobs currently queued on
each AFE, their expected finish time and the size of the
input file(s) for the task to be scheduled next. The scheduler
iterates over each AFE to estimate the minimum wait time
for the task to be scheduled. For each AFE, it calculates
the queue wait time (due to other jobs) and data transfer
time to that particular AFE. It chooses the AFE for which
the sum of these two components is minimum. The minwait
scheduler maintains and updates the “expected free time” of
each AFE using the runtime history of jobs. When a task is
ready to be executed, the scheduler calculates the expected
wait time of the task for every AFE. The expected wait time
at an AFE is calculated as: “expected free time” at the AFE
plus the expected data transfer time (estimated using the
input file size and AFE location). The scheduler assigns the
task to an AFE that is expected to have the minimum wait
time.

Hybrid: In the hybrid strategy, we exploit the storage
server within the AnalyzeThis appliance (storage server in
Figure 2(a)), in addition to the AFEs, to exploit additional
opportunities. The storage server can run certain tasks in
addition to anFS services. Running computation on the
servers to which the disks are attached is a well-known prac-
tice adopted by several commercial vendors. However, hy-
brid processing offers more benefits by further exploiting the
internal, aggregate bandwidth of the multi-channel flash de-
vice that exceeds the PCIe bandwidth between the storage
server and the flash device by a factor of 2-4× [8]. Ana-
lyzeThis does not blindly place all tasks on the AFEs or on
the host storage server. The challenge is in carefully deter-
mining what to offload where (storage server vs. AFE) and
when. Traditional solutions that simply perform server-side
processing do not address this optimization. Reduce tasks
in workflows involve high data movement cost because they
gather multiple intermediate inputs on the AFEs, and can be
moved to the storage server. This approach has the advan-
tage of minimizing the overhead of data movement between
the AFEs, beyond what Input Locality alone can achieve,
without sacrificing the parallelism. Also, tasks that cause
an uneven distribution on the AFEs cause stragglers, and
can be moved to the storage server (unaligned tasks). Such
tasks can be identified based on profiling of the workflows.
The hybrid approach can work in conjunction with any of
the aforementioned scheduling techniques.



3.3 anFS File System Interface
The functionalities of AnalyzeThis are exposed to the clients

via a specialized file system interface, “anFS.”Since the anal-
ysis workflows operate on but do not modify the original
data from scientific experiments and simulations, anFS is
designed as a write-once-read-many file system. As dis-
cussed earlier (Section 3), anFS is exported to clients via
NFS. Thus, operations on shared files follow the NFS con-
sistency semantics. anFS provides standard APIs such as
open(), read(), and write(), as well as support special vir-
tual files (SVFs), serving as an interaction point, e.g., to
submit and track jobs, between users and AnalyzeThis.

Figure 2(b) shows the overall architecture of anFS. It is
implemented using the FUSE user-space file system, and
can be mounted on the standard file system, e.g., /mnt/
anFS/. FUSE provides an elegant way to develop user-level
file systems. anFS provides several custom features, such
as workflow execution and provenance management, which
are more appropriate to be implemented in the user-space
than the kernel-level. Also, a FUSE-based, user-level im-
plementation offers better portability than a kernel-based
solution. anFS is composed of the following components.
The Namespace Manager consolidates the array of available
AFEs, and provides a uniform namespace across all the el-
ements. The Workflow Manager implements the workflow
engine of AnalyzeThis (Section 3.2). The Device Manager
provides the control path to the AFEs, implementing AFE-
OSD (Section 3.1.1) to allow interactions with the AFEs.
Finally, the exoFS (Extended Object File System) layer [12]
provides the data path to the AFEs.

Namespace: anFS exposes a consolidated standard hier-
archical UNIX namespace view of the files and SVFs on the
AFEs. To this end, the storage server metadata table (Sec-
tion 3.1.1) includes additional information associated with
every stored object and information to track the AFEs on
which the objects are stored (Figure 3). For example, there
is an AFE identifier and an object identifier associated with
every inode of a file stored by anFS. All file system opera-
tions are first sent to the Namespace Manager that consults
the metadata to route the operation to an appropriate AFE.
To manage the large amount of metadata that increases with
increasing number of files, provide easy and fast access, and
support persistence across failures we employ the SQLite
RDBMS [48] to store the metadata. We note that anFS
implements features such as directories, special files, and
symbolic links, entirely in the metadata database; the AFEs
merely store and operate on the stored data objects. In-
stead of striping, anFS stores an entire file on a single AFE
to facilitate on-element analysis and reduce data movement.
The placement of a file on an AFE is either specified by the
workflow manager, or a default AFE (i.e., inode modular
number-of-AFEs) is used.

Data and Control Path: To provide a data path to
the AFEs, anFS uses exoFS, an ext2-based file system for
object stores. anFS stores regular data files via the exoFS
mount points, which are created one for each AFE. For reads
and writes to a file, anFS first uses the most significant bit
of the 64-bit inode number to distinguish between a regular
file (MSB is 0) and a SVF (MSB is 1). For regular files, the
Namespace Manager locates the associated AFE and uses
exoFS to route the operation to the AFEs as shown in Fig-
ure 2(b). Upon completion, the return value is returned to
the user similarly as in the standard file system. To provide

a control path for active operations, anFS intercepts the files
and routes it to the Workflow Manager, which uses the De-
vice Manager to route the operations to the AFEs using the
AFE-OSD library for further analysis and actions.

Active File Operations — Job Submission: anFS
supports SVFs to allow interaction between users and Ana-
lyzeThis operations, e.g., running an analysis job, checking
the status of the job, etc. Specifically, we create a spe-
cial mount point (.analyzethis) under the root directory for
anFS (e.g., /mnt/anFS/), which offers similar functionality
as that of /proc but for workflow submission and manage-
ment (Figure 2(b)). To submit a job, e.g., JobA, the user
first creates a submission script (/home/alice/joba-submission)
that contains information about how the job should be ex-
ecuted and the data that it requires and produces. Next,
the job is submitted by writing the full path of the submis-
sion script to the submission SVF, e.g., by using echo/home/
alice/joba-submission>/mnt/anFS/.analyzethis/alice/submit.
This SVF write is handed to the Workflow Manager for pro-
cessing, which parses the script, assigns a unique opaque 64-
bit job handle to the script, and takes appropriate actions
such as creating a task schedule, and using the appropriate
Device Manager thread to send the tasks to the AFEs. The
Workflow Manager also updates a per-user active job list,
e.g., SVF /mnt/anFS/.analyzethis/alice/joblist for user al-
ice, to include the job handle for the newly submitted job.
Each line in the joblist file contains the full path of the sub-
mission script and the job handle. Moreover, the Workflow
Manager also monitors the task progress. This information
can be retrieved by the user by reading from the job handle
SVF /mnt/anFS/.analyzethis/alice/joba-status. When the
user accesses the job handle, the request is directed to the
Device Manager thread for the AFE, via the Workflow Man-
ager. The Device Manager thread sends the get attribute
command via the AFE-OSD protocol to the Task Tracker
in the Mini Workflow Engine on the AFE to retrieve the
status of the jobs.

Supporting Internal Data Movement: Ideally, An-
alyzeThis will schedule a task to an AFE that also stores the
(most) data needed by the task. While we attempt to mini-
mize data movement through smart heuristics, there is still
the need to move data between AFEs as a perfect assign-
ment is not feasible. To this end, anFS may need to replicate
(or move) data from one AFE to another by involving the
storage server. However, this incurs added overhead on the
storage server. In the future, direct PCI to PCI communi-
cation can help expedite these transfers.

Data and Workflow Security: anFS ensures data se-
curity for multiple users via the OSD2 standards. To protect
the stored data, OSD maintains the ownership of objects
as object attributes. When a data item is stored, it also
provides the kernel-level user-id of the data owner, which
is then stored in the OSD-level object ownership metadata
automatically by the device. When the data is accessed, the
user-id information is provided along with the request, and
the OSD2 protocol ensures that only the allowed user(s) are
given access to the data. Similarly, when a task is sched-
uled on the AFE, it is associated with the user-id infor-
mation, and must present these credentials to access data.
The access control for the SVFs are set such that the sub-
mit SVF (.anFS/submit) is world writable, but the resulting
joblist and status files are user specific. The sub-directories
are named on a per-user basis, e.g., Alice’s jobs are under



.anFS/alice/, and the associated POSIX ACLs protect user
files.

3.4 Provenance
AnalyzeThis tracks the lineage of the data produced as a

result of a workflow execution at very minimal cost. This al-
lows the user to utilize the intermediate data for future anal-
ysis. We have implemented provenance support on top of the
distributed database infrastructure (Figure 3) between the
storage server (workflow table, anFS wf) and AFEs (Dataset
task collection membership table, tcid oid). Recall that
anFS wf stores information about the task and the AFE on
which the task is executed; tcid oid stores the task collection
to data object mapping and will also need to be maintained
on the storage server. Upon receiving a provenance query
regarding a dataset, AnalyzeThis searches the anFS dirent
table to get the anFS inode of the file, which is used to get
the object id. The object id is then used to retrieve the task
collection id from the tcid oid table. The task collection id
is used to obtain the AFE id from the anFS wf table. Alter-
natively, if tcid oid is not maintained on the storage server
as well, we can broadcast to the AFEs to determine the task
collection id for a data object id. Further analysis of the lin-
eage is performed on that AFE. Using the task collection id
and the attribute page we get the task collection attribute
page number. Using the predefined attribute offset all the
information regarding the task is fetched. The task prove-
nance from multiple AFEs is merged with similar job-level
information that is maintained at the storage server in the
anFS wf table.

4. EVALUATION

4.1 Experimental Setup
Testbed: Our emulation testbed (Figure 4) is composed

of the following: (1) client desktop computer that submits
analysis workflows, (2) storage server within the AnalyzeThis
appliance, and (3) the networked machines that emulate the
AFEs (four AFEs are connected to the storage server). For
the desktop computer and the storage server, we used a 1.8
GHz Intel Xeon E5-2603 processor. We emulated the AFEs
using Atom machines with RAM disks, to mimic the flash
controller and the internal flash chips with high I/O band-
width to the controller. The Atom-based AFEs use a single
1.8 GHz Atom processor as the controller, a 3 GB RAM disk
as the flash chip, and a 1 Gbps Ethernet connection to the
storage server within the AnalyzeThis appliance. All servers
run the Linux kernel 2.6.32-279. anFS offers a read and write
bandwidth of 120 MB/s and 80 MB/s, respectively.

Software: AnalyzeThis has been implemented using 10 K
lines of C code. We extended the OSD iSCSI target emu-
lator from the open-osd project [33], for the AFE target.
The task executions in an AFE are serialized by spawning
a dedicated thread, which mimics dedicating a device con-
troller for active processing. For the AFE-OSD driver in the
storage server, we extended the OSD initiator driver in the
Linux kernel. We also extended exoFS [12] to synchronize
the OSD object id space with the userspace anFS. anFS has
been implemented using FUSE [13], and it keeps track of
metadata using SQLite [48].

Scientific Workflows: We used several real-world com-
plex workflows. We used Montage [27], Brain Atlas [28],
Sipros [54], and Grep [14] workflows. The DAG representa-
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Figure 5: The DAGs representing the workflows.

tions and the details of the workflows are shown in Figure 5
and Table 1.

The Montage workflow [27] creates a mosaic with 10 as-
tronomy images. It uses 8 analysis kernels, and is composed
of 36 tasks, several of which can be parallelized to run on
the AFEs. The Brain workflow [28] creates population-based
brain atlases from the fMRI Data Center’s archive of high
resolution anatomical data, and is part of the first prove-
nance challenge [28] used in our provenance evaluation. The
Sipros workflow runs DNA search algorithms with database
files to identify and quantify proteins and their variants from
various community proteomics studies. It consists of 12
analysis tasks, and uses three analysis kernels. The Grep
workflow counts the occurrences of ANSI C keywords in the
Linux source files.

Input Intermediate Output Total Object

(MB) (#)

Montage 51 222 153 426 113

Brain 70 155 20 245 35

Sipros 84 87 1 172 45

Grep 463 363 1 827 13

Table 1: Workflow input, output and intermediate data size.
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4.2 AnalyzeThis Performance
We compare offline-anFS and AnalyzeThis. In offline-

anFS, data analyses are performed on desktops or clusters by
pulling data from the anFS, whereas in AnalyzeThis, they
are performed on the AFE cores. In Figure 6, we show
the total runtime in terms of computation and I/O time.
We further break down the I/O time into anFS I/O and
anFS-internal I/O times (i.e., data movement between the
AFEs). Therefore, a break-down of the workflow run time
comprises of the following: (i) time to read the data from
anFS (only offline-anFS incurs this cost), (ii) compute time
of the workflow on either the desktop or the AFEs, (iii) I/O
time to write the intermediate output to anFS during anal-
ysis (only for offline-anFS), (iv) data shuffling time among
the AFEs (only for AnalyzeThis), and (v) time to write the
final analysis output to anFS. We specifically compared the
following scenarios: (i) offline analysis using one client node
and anFS (offline-anFS), (ii) AnalyzeThis using four Atom-
based AFEs and round-robin scheduling across the AFEs,
and (iii) AnalyzeThis-hybrid using the storage server, four
AFEs and round-robin across the AFEs.

In the Montage, Brain and Grep experiments for offline-
anFS, the time to write the analysis outputs to anFS notice-
ably increases the run time (more than 20% of the run time),
while, for AnalyzeThis, the I/O time, anFS-internal I/O, is
much smaller compared to the overall run time. The run
time for offline-anFS for Montage and Brain is slightly lower
than AnalyzeThis due to relatively less computing power on
the AFEs. However, as AFEs begin to have multicores in
the future, this small difference is likely to be overcome. In
contrast, for Sipros and Grep, AnalyzeThis performs better
than offline-anFS. This is because the tasks are memory-
bound. The results indicate that offline’s performance is
heavily affected by the data movement costs, whereas Ana-
lyzeThis is less impacted. Further, AnalyzeThis can free up
compute resources of desktops or clusters, enabling “true”
out-of-core data analysis.

Next, we evaluate (AnalyzeThis-Hybrid). For Montage,
AnalyzeThis-Hybrid significantly reduced the total run time
over AnalyzeThis and offline-anFS. Unaligned mProjectPP
tasks (Figure 5(a)) are executed on the storage server, which
removed task stragglers. Also, more than 50% of data copies
between AFEs are reduced by executing reduce tasks on the
storage server. Similarly, for Brain, executing a single re-
duce task (softmean in Figure 5(b)) on the storage server
eliminated more than 75% of data copies, which results in
a 37% runtime reduction compared to AnalyzeThis. Sim-
ilarly, for Sipros, AnalyzeThis-hybrid is better than both
AnalyzeThis and offline-anFS as it ran unaligned tasks on

the storage server.

4.3 Scheduling Performance
Here, we discuss the performance of scheduling techniques.
Impact of Scheduling Heuristics: Figure 6 com-

pares the performance of round robin (RR), input locality
(IL), minimum wait (MW), and hybrid (HY) based on AFE
utilization and data movement. Figure 7(a) compares the
sum (first bar) of the computation time of the workflow and
the data shuffling time among the AFEs against the AFE
utilization time (other two bars). AFE utilization is denoted
by the slowest (second bar) and the fastest (third bar) AFEs,
and the disparity between them indicates a load imbalance
across the AFEs. The smaller the difference, the better the
utilization. Figure 7(b) shows the amount of data shuffled
between the AFEs. An optimal technique strikes a balance
between runtime, data movement, and AFE utilization.
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HY and RR show a balanced load distribution across the
AFEs with the least variability in utilization. However, RR
incurs the most data movement. IL can improve runtime by
significantly reducing data movement, however it may de-
grade the overall performance due to inefficient load distri-
bution. IL shows higher runtimes than RR in all workflows.
In fact for IL, we observed in Montage that the slowest AFE
was assigned 21 tasks among 36 tasks; in Brain, only two
AFEs out of four executed all of the tasks; and in Sipros,
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only one AFE was used during analysis. HY and MW per-
form best in reconciling AFE utilization and data movement
cost. For Montage, MW shows a 10% lower runtime than
IL by incurring a 6% increase in data movement. For Brain,
RR and MW show very close runtimes, but MW further re-
duces the data movement cost of RR by 16%, with less core
utilization, suggesting that it is likely to be more energy-
efficient. For Sipros, MW shows a 2.4% lower runtime than
RR while reducing the data movement cost by 3%. By ex-
ecuting reduce tasks on the storage server, HY significantly
reduces the runtimes over other scheduling algorithms for
all workflows. In Montage and Brain, this also reduces data
movement cost by 52% and 76% over RR, respectively.

Scaling Experiments: We performed scalability exper-
iments for AnalyzeThis by increasing the number of AFEs.
Figure 8 shows the results with MW. Interestingly, we ob-
serve that the overall performance scales only up to a certain
number of AFEs, since the maximum task parallelism in the
workflow can limit the performance gain. In Montage, for
instance, mProjectPP is the most time-consuming kernel,
used by ten analysis tasks. After five AFEs, at least one AFE
will run one more mProjectPP than others. Thus, there is
little improvement in performance after five AFEs. Like-
wise, Brain and Sipros scale only up to four or five AFEs,
respectively. Also, each workflow shows a different speed-
up curve with the increase in AFEs, depending on its task
dependency, number of kernels, inputs and outputs. For
instance, Sipros shows a linear speedup up to five AFEs.
This is because the less complex Sipros DAG (Figure 5(c))
allowed for more parallelism in task execution with the in-
crease in AFEs than others. In some cases, however, the
increased data movement cost with more AFEs can degrade
the performance. For instance, Brain shows a slightly higher
run time from four to eight AFEs, due to the increased data
movement.

Provenance Performance: We used the Brain work-
flow (Figure 5(b)) and the provenance queries from the first
provenance challenge [28] to evaluate AnalyzeThis. The
provenance test consists of five queries, where Query 1 finds
the provenance data up to the start of a job for a file; Query 2
finds the provenance data up to a task name for a file; Query
3 finds the provenance details for the levels within a DAG
for a file; Query 4 finds all the invocations of a task that
ran with the certain parameters and on a specific date; and
Query 6 finds all output images produced by a task when an-
other task was executed with certain arguments. In addition
to the decentralized approach (Section 3.4), we implemented
a centralized technique, where all of the lineage information
is maintained on the storage server. For both approaches,
one million entries were added and retrieved from the stor-
age server side tables. For the decentralized approach, four

Query Centralized (sec) Decentralized (sec)

1 12.930 8.180

2 1.750 2.830

3 13.746 10.720

4 0.410 3.400

6 7.410 7.640

Table 2: Response time for five provenance queries.

AFEs were used and each had 0.25 million entries in all
the database tables. For three out of five cases (Table 2),
centralized performed better in terms of the query response
time. Even though the query execution is distributed to
multiple AFEs, there is no improvement in the processing
time for some queries as the storage server side provenance
information still needs to be parsed. Reduction in query
time for decentralized is primarily due to the parallelization
opportunity available in the workflow. On the other hand,
the centralized approach offers no fault tolerance in the event
of a storage server crash. Thus, decentralization is desirable
even if the query time is higher in certain cases.

5. RELATED WORK
Migrating tasks to disks has been explored before [37, 18].

There is a renewed interest in active processing given the re-
cent advances in SSD technology [39]. Recent efforts, such as
iSSD [8], SmartSSD [17], and Active Flash [51] have demon-
strated the feasibility and the potential of processing on the
SSD. These early studies lay the foundation for AnalyzeThis.

The active storage community has leveraged the object
storage device (OSD) protocol to enable computation within
a storage device. The OSD T10 standard [55, 56, 38] de-
fines a communication protocol between the host and the
OSD. Recent efforts leverage the protocol for different pur-
poses, including executing remote kernels [38], security, and
QoS [36, 56]. In contrast, we extend the OSD implemen-
tation to support entire workflows, and to integrally tie to-
gether the data with both the analysis sequence and its lin-
eage.

Some extensions to parallel file systems, e.g., PVFS [47]
and Lustre [35], provide support for analysis on the I/O
node’s computing core. However, they are not workflow-
aware, a key trait for efficient analysis execution, and nei-
ther is the analysis conducted on the storage device. The
ADIOS [23] I/O middleware uses a subset of staging nodes
alongside a running simulation on a cluster to reduce the
simulation output on-the-fly; while workflow-aware, it also
only uses the computing elements of the staging nodes. In-
stead, AnalyzeThis uses the AFEs on the storage them-
selves, obviating the need for a separate set of staging nodes
for analysis. Enterprise solutions such as IBM Netezza [44]
enable provenance tracking and in-situ analysis, but lack
an easy-to-use file system interface and workflow-awareness.
Workflow- and provenance-aware systems, such as PASS [29],
LinFS [40], BadFS [4], WOSS [1], and Kepler [2], are not
meant for in-situ analysis. Compared to dedicated prove-
nance systems like PASS and LinFS, lineage tracking in Ana-
lyzeThis is a natural byproduct of executing workflows in the
storage. Distributed execution engines, such as Dryad [57],
Nephele [3], Hyracks [6], and MapReduce [9], can execute
data-intensive DAG-based workflows on distributed comput-
ing resources. AnalyzeThis fundamentally differs from these
systems as it exploits the SSDs as the primary computing
resources.



6. CONCLUSION
The need to facilitate efficient data analysis is crucial to

derive insights from mountains of data. However, extant
techniques incur excessive data movement on the storage
system. We have shown how analysis-awareness can be built
into each and every layer of a storage system. The concepts
of building an analysis object abstraction atop an Active
Flash array, integrating a workflow scheduler with the stor-
age, and exposing them via a /proc-like file system bring
a fresh perspective to purpose-built storage systems. We
have developed the AnalyzeThis storage system on top of
an emulation platform of the Active Flash array. Our eval-
uation of AnalyzeThis shows that is viable, and can be used
to capture complex workflows.
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